Alternative splicing impairs soluble guanylyl cyclase function in aortic aneurysm.

نویسندگان

  • Emil Martin
  • Eva Golunski
  • Susan T Laing
  • Anthony L Estrera
  • Iraida G Sharina
چکیده

Nitric oxide (NO) receptor soluble guanylyl cyclase (sGC) is a key regulator of several important vascular functions and is important for maintaining cardiovascular homeostasis and vascular plasticity. Diminished sGC expression and function contributes to pathogenesis of several cardiovascular diseases. However, the processes that control sGC expression in vascular tissue remain poorly understood. Previous work in animal and cell models revealed the complexity of alternative splicing of sGC genes and demonstrated its importance in modulation of sGC function. The aim of this study was to examine the role of alternative splicing of α1 and β1 sGC in healthy and diseased human vascular tissue. Our study found a variety of α1 and β1 sGC splice forms expressed in human aorta. Their composition and abundance were different between samples of aortic tissue removed during surgical repair of aortic aneurysm and samples of aortas without aneurysm. Aortas with aneurysm demonstrated decreased sGC activity, which correlated with increased expression of dysfunctional sGC splice variants. In addition, the expression of 55-kDa oxidation-resistant α1 isoform B sGC (α1-IsoB) was significantly lower in aortic samples with aneurysm. The α1-IsoB splice variant was demonstrated to support sGC activity in aortic lysates. Together, our results suggest that alternative splicing contributes to diminished sGC function in vascular dysfunction. Precise understanding of sGC splicing regulation could help to design new therapeutic interventions and to personalize sGC-targeting therapies in treatments of vascular disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA splicing in regulation of nitric oxide receptor soluble guanylyl cyclase.

Soluble guanylyl cyclase (sGC) is a key protein in the nitric oxide (NO)/-cGMP signaling pathway. sGC activity is involved in a number of important physiological processes including smooth muscle relaxation, neurotransmission and platelet aggregation and adhesion. Regulation of sGC expression and activity emerges as a crucial factor in control of sGC function in normal and pathological conditio...

متن کامل

Hydrogen Peroxide Alters Splicing of Soluble Guanylyl Cyclase and Selectively Modulates Expression of Splicing Regulators in Human Cancer Cells

BACKGROUND Soluble guanylyl cyclase (sGC) plays a central role in nitric oxide (NO)-mediated signal transduction in the cardiovascular, nervous and gastrointestinal systems. Alternative RNA splicing has emerged as a potential mechanism to modulate sGC expression and activity. C-α1 sGC is an alternative splice form that is resistant to oxidation-induced protein degradation and demonstrates prefe...

متن کامل

Selective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation.

Effects of a novel soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), were characterized on guanylyl cyclase activity in cytosolic fraction of COS-7 cells overexpressing the alpha 1 and beta 1 subunits of the rat soluble enzyme. ODQ was a noncompetitive inhibitor of soluble guanylyl cyclase with respect to Mn2+ or Mn(2+)-GTP and was a mixed competitive/noncom...

متن کامل

Molecular biology of natriuretic peptides and nitric oxide synthases.

Natriuretic peptides and nitric oxide play important roles in cardiovascular and renal physiology and disease. The natriuretic peptides - atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide - comprise a family of proteins that participate in the integrated control of intravascular volume and arterial blood pressure. The natriuretic peptides differentially bind ...

متن کامل

Long-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase and cGMP-degrading phosphodiesterase, alterations in hyperammonemia

Hyperammonemia is considered the main responsible for the neurological alterations found in liver disease and hepatic encephalopathy, including decreased intelectual and cognitive function. Ammonia affects both excitatory and inhibitory synaptic transmission in the mammalian brain by a variety of mechanisms. LTP is impaired in hyperammonemia and this may contribute to the impairment of cognitiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 307 11  شماره 

صفحات  -

تاریخ انتشار 2014